Influence de l'âge au diagnostic sur le pronostic du cancer du sein

Considérations méthodologiques

Introduction

- Tumeurs des femmes jeunes plus agressives:
 - grades plus élevés
 - envahissement ganglionnaire plus fréquent
- Survie relative: 85% à 5 ans
- Survie des femmes jeunes inférieure à celle des femmes plus âgées
 - Pour quelle(s) raison(s)?
 - dû aux facteurs de mauvais pronostics ?
 - effet indépendant de l'âge jeune?
- Etudes précédentes:
 - Résultats contradictoires
 - Etudes récentes^{1,2} en faveur d'un effet indépendant de l'âge

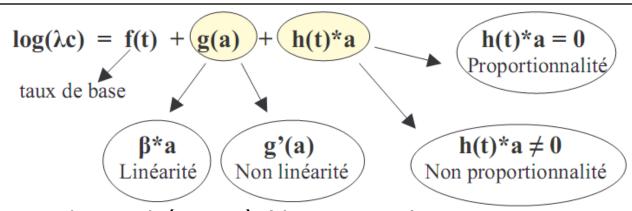
Considérations méthodologiques

Mais, dans la plupart de ces études:

Les méthodes statistiques utilisées ne permettent pas une analyse approfondie de l'effet de l'âge

- Méthode « univariée »
 - Pas de prise compte de plusieurs covariables (régression)
- Age en classes
 - Perte d'informations
 - Linéarité / Non linéarité non testable
- * Non linéarité: 7 de 10 ans n'a pas le même effet à 40 ans et à 70 ans
 - Modèles à taux proportionnel (Cox, ...)
- * Non proportionnalité: l'effet de la covariable n'est pas le même selon le temps écoulé depuis le diagnostic
 - Survie brute / Survie nette

Méthodes d'estimation de la survie


- Survie brute: toutes causes de décès confondues
- Survie nette: décès liés à une maladie (cancer du sein ici)
 - Survie spécifique: nécessite de connaître précisément la cause de décès
 - Survie relative: ne nécessite pas de connaître la cause de décès => Intérêt ++

Survie relative

$$\lambda obs = \lambda c + \lambda att$$

λobs = taux instantané de mortalité observée dans la cohorte
λatt = taux de mortalité attendue dans la population générale de même âge, sexe, etc...

 $\lambda c = taux de mortalité en excès « due au cancer»$

 λ_c = taux de mortalité en excès 'due au cancer'

t = temps écoulé depuis le diagnostic

a = âge au diagnostic - variable continue

h(t) = spline cubique à 1 noeud à 1 an de suivi

g'(a)= spline cubique à 1 noeud à l'âge moyen

Intérêt:

- Modèles Linéaires Généralisés
- Grande souplesse apportée par les splines de régression
- Pas de forme définie « à priori »
- Test simultanée de la linéarité et de la proportionnalité

Illustration

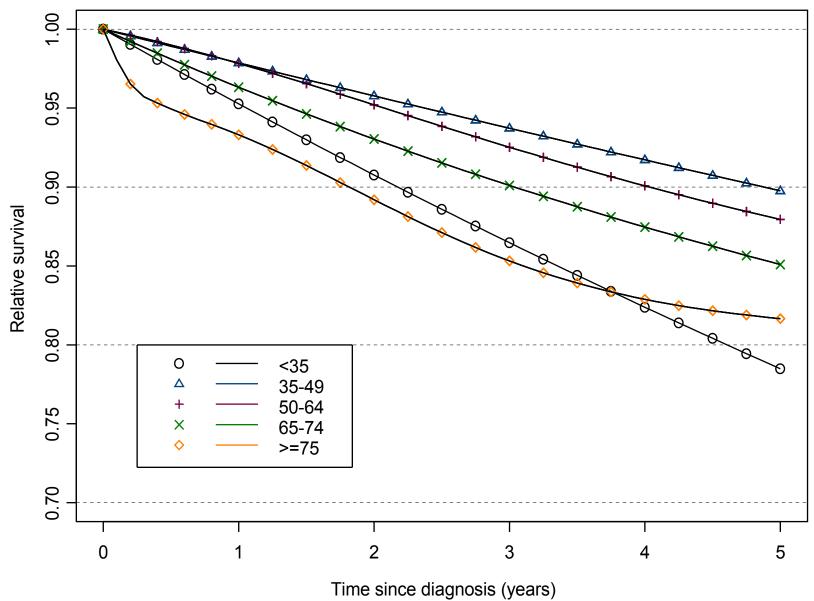
Cluze et al. Analysis of the effect of age on the prognosis of breast cancer. Breast Cancer Res. Treat. 2008

Objectif:

Étude de l'effet de l'âge au diagnostic sur la survie relative avec prise en compte du stade et du grade tumoral, par une méthode statistique adaptée

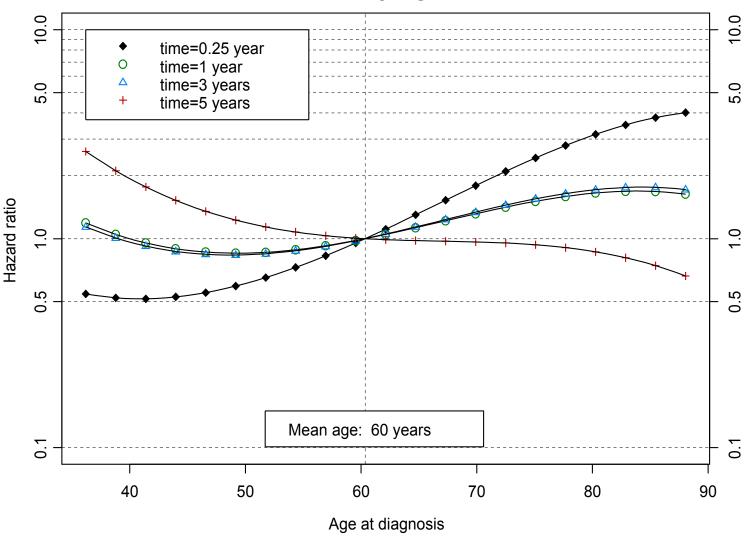
Matériel et méthode

Matériel:


- Données du registre des cancers de l'Isère
- 4791 femmes (≥ 15 ans)
- Cancers invasifs diagnostiqués entre 1990 et 1997
- Date de point: 01/01/2002
- Suivi médian des patientes vivantes: 7 ans
- Age moyen au diagnostic: 60 ans

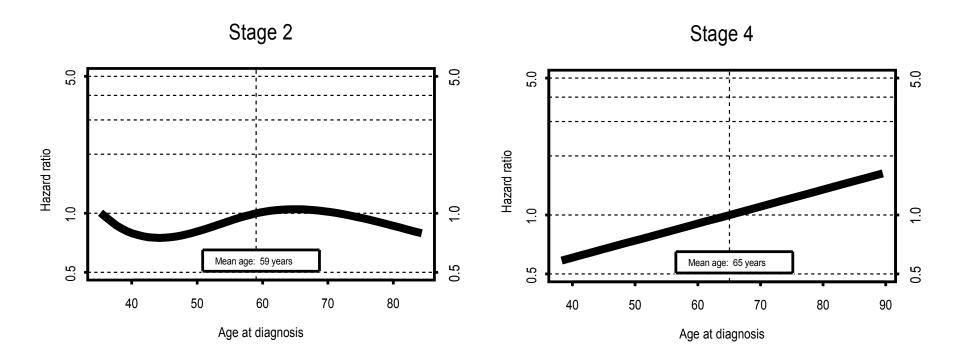
Méthode:

- Modélisation statistique présentée ci-dessus
- Sélection d'un modèle pour chaque stade et chaque grade
 - Grade SBR
 - Stade tumoral d'après le pTNM (classification AJCC)

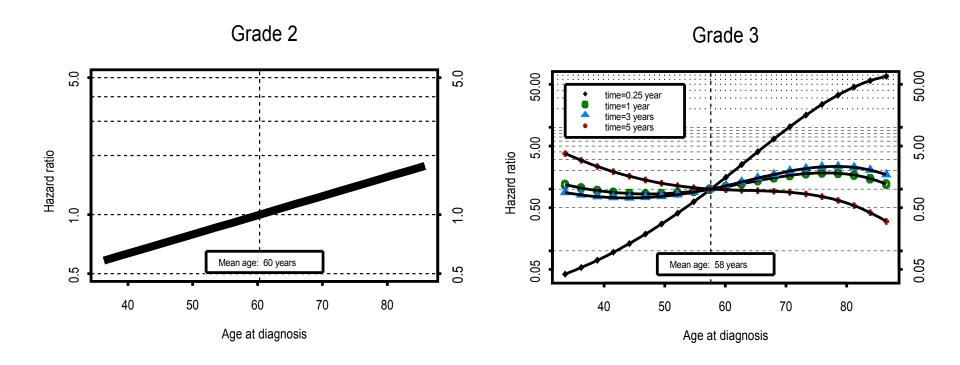

Résultats

Survie relative par classe d'âge

Modèles retenus



$$TR = \log(\frac{\lambda c(t, a_1)}{\lambda c(t, a_0)}) = g(a_1) - g(a_0) + h(t)(a_1 - a_0)$$


Modèles retenus selon le stade

- Stade 1: Pas de convergence des modèles (peu de décès)
- Stade 3: Pas d'effet significatif de l'âge

Modèles retenus selon le grade SBR

Grade 1: Pas d'effet significatif de l'âge

Conclusion

- Âge jeune n'apparaît plus comme un facteur de mauvais pronostic après prise en compte du stade et du grade
- > Sauf pour grade 3: profil particulier des taux de mortalité en excès
- Intérêt de la méthode statistique:
 - Survie relative
 - Modèles souples
 - Test simultané des hypothèses de linéarité et de proportionnalité

Il serait intéressant d'appliquer cette méthode aux prochaines études

Conflits d'intérêts

Aucun conflit d'intérêt

Merci pour votre attention